11 research outputs found

    Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro

    Get PDF
    Trans-splicing, the in vivo joining of two RNA molecules, is well characterized in several groups of simple organisms but was long thought absent from fungi, plants and mammals. However, recent bioinformatic analyses of expressed sequence tag (EST) databases suggested widespread trans-splicing in mammals^1-2^. Splicing, including the characterised trans-splicing systems, involves conserved sequences at the splice junctions. Our analysis of a yeast non-coding RNA revealed that around 30% of the products of reverse transcription lacked an internal region of 117 nt, suggesting that the RNA was spliced. The junction sequences lacked canonical splice-sites but were flanked by direct repeats, and further analyses indicated that the apparent splicing actually arose because reverse transcriptase can switch templates during transcription^3^. Many newly identified, apparently trans-spliced, RNAs lacked canonical splice sites but were flanked by short regions of homology, leading us to question their authenticity. Here we report that all reported categories of non-canonical splicing could be replicated using an in vitro reverse transcription system with highly purified RNA substrates. We observed the reproducible occurrence of ostensible trans-splicing, exon shuffling and sense-antisense fusions. The latter generate apparent antisense non-coding RNAs, which are also reported to be abundant in humans^4^. Different reverse transcriptases can generate different products of template switching, providing a simple diagnostic. Many reported examples of splicing in the absence of canonical splicing signals may be artefacts of cDNA preparation

    Detection of human interchromosomal trans-splicing in sequence databanks

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Trans-splicing is a common phenomenon in nematodes and kinetoplastids, and it has also been reported in other organisms, including humans. Up to now, all in silico strategies to find evidence of trans-splicing in humans have required that the candidate sequences follow the consensus splicing site rules (spliceosome-mediated mechanism). However, this criterion is not supported by the best human experimental evidence, which, except in a single case, do not follow canonical splicing sites. Moreover, recent findings describe a novel alternative tRNA mediated trans-splicing mechanism, which prescinds the spliceosome machinery. In order to answer the question, 'Are there hybrid mRNAs in sequence databanks, whose characteristics resemble those of the best human experimental evidence?', we have developed a methodology that successfully identified 16 hybrid mRNAs which might be instances of interchromosomal trans-splicing. Each hybrid mRNA is formed by a trans-spliced region (TSR), which was successfully mapped either onto known genes or onto a human endogenous retrovirus (HERV-K) transcript which supports their transcription. The existence of these hybrid mRNAs indicates that trans-splicing may be more widespread than believed. Furthermore, non-canonical splice site patterns suggest that infrequent splicing sites may occur under special conditions, or that an alternative trans-splicing mechanism is involved. Finally, our candidates are supposedly from normal tissue, and a recent study has reported that trans-splicing may occur not only in malignant tissues, but in normal tissues as well. Our methodology can be applied to 5'-UTR, coding sequences and 3'-UTR in order to find new candidates for a posteriori experimental confirmation.112198209Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [140730/2008-7]FAPESP [2008/02647-3

    Differential L1 regulation in pluripotent stem cells of humans and apes

    No full text
    Identifying cellular and molecular differences between human and non-human primates (NHPs) is essential to the basic understanding of the evolution and diversity of our own species. Until now, preserved tissues have been the main source for most comparative studies between humans, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, these tissue samples do not fairly represent the distinctive traits of live cell behaviour and are not amenable to genetic manipulation. We propose that induced pluripotent stem (iPS) cells could be a unique biological resource to determine relevant phenotypical differences between human and NHPs, and that those differences could have potential adaptation and speciation value. Here we describe the generation and initial characterization of iPS cells from chimpanzees and bonobos as new tools to explore factors that may have contributed to great ape evolution. Comparative gene expression analysis of human and NHP iPS cells revealed differences in the regulation of long interspersed element-1 (L1, also known as LINE-1) transposons. A force of change in mammalian evolution, L1 elements are retrotransposons that have remained active during primate evolution. Decreased levels of L1-restricting factors APOBEC3B (also known as A3B) and PIWIL2 (ref. 7) in NHP iPS cells correlated with increased L1 mobility and endogenous L1 messenger RNA levels. Moreover, results from the manipulation of A3B and PIWIL2 levels in iPS cells supported a causal inverse relationship between levels of these proteins and L1 retrotransposition. Finally, we found increased copy numbers of species-specific L1 elements in the genome of chimpanzees compared to humans, supporting the idea that increased L1 mobility in NHPs is not limited to iPS cells in culture and may have also occurred in the germ line or embryonic cells developmentally upstream to germline specification during primate evolution. We propose that differences in L1 mobility may have differentially shaped the genomes of humans and NHPs and could have continuing adaptive significance
    corecore